# MULTI-RATE GIGABIT ETHERNET & FIBER CHANNEL SFP CWDM TRANSCEIVERS WITH DIGITAL DIAGNOSTICS

# TRPUG1KxXx000x0G



# **Product Description**

The TRPUG1KxXx000x0G SFP with integrated digital diagnostics monitoring functionality provide a quick and reliable interface for Gigabit Ethernet and 1.062GBd Fibre Channel applications. The transceivers are designed to support data rates ranging from 1.25Gb/s down to 125Mb/s.

All modules satisfy Class 1 Laser Safety requirements in accordance with the US FDA/CDRH and international IEC-60825 standards. The transceivers are compliant with the SFP Multi-Source Agreement (MSA).

The TRPUG1KxXx000x0G CWDM transceivers connect to standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers have colored bail-type latches, which offer an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

The transmitter and receiver DATA interfaces are AC coupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over operating case temperature ranges of  $-5^{\circ}$ C to  $+70^{\circ}$ C (Commercial),  $-5^{\circ}$ C to  $+85^{\circ}$ C (Extended) or  $-40^{\circ}$ C to  $+85^{\circ}$ C (Industrial). The housing is made of metal for EMI immunity.



### **Features**

- ☑ Eighteen (18) Wavelength CWDM Transceivers
- ☑ Industrial Operating Temperature Range
- ☑ Compatible with SFP MSA
- ☑ Compatible with IEEE 802.3z Gigabit Ethernet 1000BASE-LX PMD Specifications
- ☑ Compatible with 1.062GBd Fiber Channel 100-SM-LC-L FC-PI Standards
- ☑ Support 80km and 120km
- ☑ Digital Diagnostics through Serial Interface
- ☑ Internal Calibration for Digital Diagnostics
- ☑ Eye Safe (Class 1 Laser Safety)
- ☑ RoHS6 Compliant
- ☑ Duplex LC Optical Interface
- ☑ Loss of Signal Outputs & TX Disable Input
- ☑ Hot-pluggable
- ☑ Single +3.3V Power Supply

#### **Absolute Maximum Ratings**

| Parameter                    |            | Symbol        | Minimum | Maximum  | Units |
|------------------------------|------------|---------------|---------|----------|-------|
| Storage Temperature Range    |            | $T_{ST}$      | - 40    | + 85     | °C    |
|                              | Commercial |               | - 5     | + 70     |       |
| Operating Case Temperature 1 | Extended   | $T_{OP}$      | - 5     | + 85     | °C    |
|                              | Industrial | ]             | - 40    | + 85     |       |
| Supply Voltage               |            | $V_{cc}$      | 0       | + 4.5    | V     |
| Input Voltage                |            | $V_{_{I\!N}}$ | 0       | $V_{cc}$ | V     |

<sup>&</sup>lt;sup>1</sup> Measured on top side of SFP module at the front center vent hole of the cage.

 $<sup>^2</sup>$  -40°C to 0°C is ambient, and 0°C to +85°C is case temperature. For case temperature, measured on top side of SFP module at the front center vent hole of the cage.



# **Transmitter Performance Characteristics** (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

| Parameter                           |    | Symbol                                                  | Minimum              | Typical                | Maximum           | Units |  |
|-------------------------------------|----|---------------------------------------------------------|----------------------|------------------------|-------------------|-------|--|
| Operating Data Rate                 |    | В                                                       | 125                  | -                      | 1250              | Mb/s  |  |
| Octival Octavit Decision 1          | ZX | D                                                       | 0                    | -                      | + 5.0             | -ID   |  |
| Optical Output Power <sup>1</sup>   | VX | $P_{O}$                                                 | 0                    | -                      | + 5.0             | dBm   |  |
| Center Wavelength                   |    | $\lambda_c$                                             | See C                | Ordering Information t | able              | nm    |  |
| Wavelength Deviation                |    | $\Delta \lambda_{\rm C}$                                | λ <sub>C</sub> - 6.5 | $\lambda_{c}$          | $\lambda_C$ + 6.5 | nm    |  |
| Spectral Width (-20dB)              |    | $\Delta \lambda_{20}$                                   | -                    | -                      | 1.0               | nm    |  |
| Side Mode Suppression Ratio         |    | SMSR                                                    | 30                   | -                      | -                 | dB    |  |
| Extinction Ratio                    |    | ER                                                      | 9                    | -                      | -                 | dB    |  |
| Deterministic Jitter                |    | DJ                                                      | -                    | -                      | 80                | ps    |  |
| Total Jitter                        |    | TJ                                                      | -                    | -                      | 227               | ps    |  |
| Optical Rise/Fall Time (20% to 80%) |    | tr, tf                                                  | -                    | -                      | 0.32              | ns    |  |
| Relative Intensity Noise            |    | RIN                                                     | -                    | -                      | - 120             | dB/Hz |  |
| Dispersion Penalty <sup>2</sup>     |    | DP                                                      | -                    | -                      | 1.5               | dB    |  |
| Transmitter Output Eye              |    | Compliant with Eye Mask Defined in IEEE 802.3z Standard |                      |                        |                   |       |  |

<sup>&</sup>lt;sup>1</sup> Measured average power coupled into single mode fiber.

# **Receiver Performance Characteristics** (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

| Parameter                        |                                                                                                                                                                                        | Symbol                                                                                                                                                                                                                                                                              | Minimum                                                                             | Typical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Units                                                 |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Operating Data Rate <sup>1</sup> |                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                   | 125                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mb/s                                                  |
| (1 0-10 DED) 1                   | ZX                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                   | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In                                                    |
| ity (10-10 BER) 1                | VX                                                                                                                                                                                     | Pmin                                                                                                                                                                                                                                                                                | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBm                                                   |
| Optical Power (10 -10            | ZX                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                   | - 3.0                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID                                                    |
|                                  | VX                                                                                                                                                                                     | - Pmax -                                                                                                                                                                                                                                                                            | - 10.0                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBm                                                   |
|                                  | ZX                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                   | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - dBm                                                 |
| Increasing Light Input           | VX                                                                                                                                                                                     | Plos+                                                                                                                                                                                                                                                                               | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| Decreasing Light<br>Input        | ZX                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                   | - 35.0                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
|                                  | VX                                                                                                                                                                                     | Plos-                                                                                                                                                                                                                                                                               | - 45.0                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
| Increasing Light Input           |                                                                                                                                                                                        | t_loss_off                                                                                                                                                                                                                                                                          | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |
| Decreasing Light Input           |                                                                                                                                                                                        | t_loss_on                                                                                                                                                                                                                                                                           | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μs                                                    |
|                                  |                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                   | 0.5                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                    |
| Deterministic Jitter             |                                                                                                                                                                                        | DJ                                                                                                                                                                                                                                                                                  | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ps                                                    |
| Total Jitter                     |                                                                                                                                                                                        | TJ                                                                                                                                                                                                                                                                                  | -                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ps                                                    |
| Wavelength of Operation          |                                                                                                                                                                                        | λ                                                                                                                                                                                                                                                                                   | 1260                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nm                                                    |
| Optical Return Loss              |                                                                                                                                                                                        | ORL                                                                                                                                                                                                                                                                                 | 12                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                    |
|                                  | ty (10-10 BER) 1  Dptical Power (10-10  Increasing Light Input  Decreasing Light Input  Increasing Light Input  Decreasing Light Input  Decreasing Light Input  Decreasing Light Input | ty (10 <sup>-10</sup> BER) 1  Ty (10 <sup>-10</sup> BER) 1  Optical Power (10 <sup>-10</sup> ZX  VX  VX  Increasing Light Input  Decreasing Light Input  VX  Increasing Light Input  Decreasing Light Input  Decreasing Light Input  Decreasing Light Input  Decreasing Light Input | ty (10 <sup>-10</sup> BER) 1 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ate $^{1}$ B       125         ty $(10^{-10} BER)^{-1}$ ZX $P_{min}$ -         Optical Power $(10^{-10})$ ZX $P_{max}$ -3.0         VX $P_{max}$ -10.0         Increasing Light Input       ZX $P_{los+}$ -         Decreasing Light Input       ZX $P_{los-}$ -35.0         Increasing Light Input $t\_loss\_off$ -         Decreasing Light Input $t\_loss\_off$ -         Decreasing Light Input $t\_loss\_off$ -         DI       -       0.5         er       DJ       -         Decreation $\lambda$ 1260 | ate $^1$ B       125       -         ty ( $10^{-10}$ BER) $^1$ ZX $P_{min}$ -       -         Optical Power ( $10^{-10}$ )       ZX $P_{max}$ -       -         Optical Power ( $10^{-10}$ )       ZX $P_{max}$ -       -         Optical Power ( $10^{-10}$ )       ZX $P_{max}$ -       -         Increasing Light Input       ZX $P_{los+}$ -       -         Decreasing Light Input $I_{loss}$ $I_{los$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### **Laser Safety:**

All transceivers are Class 1 Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.





# **Oplink Communications, LLC.**

This product complies with 21 CFR 1040.10 and 1040.11 Meets Class 1 Laser Safety Requirements

<sup>&</sup>lt;sup>2</sup> pecified at 1540ps/nm (ZX) and 2600ps/nm (VX) dispersion, which corresponds to the approximate worst-case dispersion for 80km and 120km G .652 fiber over the wavelength range of 1264.5 to 1617.5nm

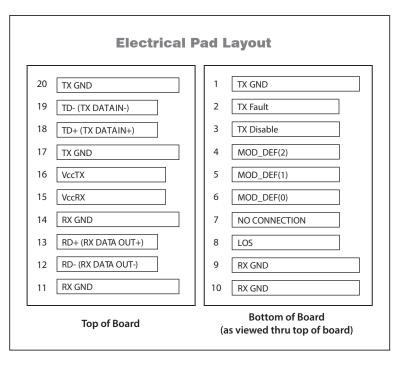
# **Transmitter Electrical Characteristics** (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

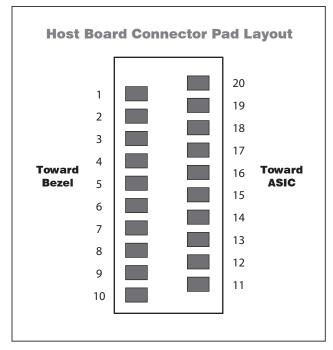
| Parameter                                     | Symbol                      | Minimum | Typical | Maximum               | Units |
|-----------------------------------------------|-----------------------------|---------|---------|-----------------------|-------|
| Input Voltage Swing (TD+ & TD-) <sup>1</sup>  | $V_{_{PP	ext{-}DIFF}}$      | 0.5     | -       | 2.4                   | V     |
| Input HIGH Voltage (TX Disable) <sup>2</sup>  | $V_{_{I\!H}}$               | 2.0     | -       | $V_{cc}$              | V     |
| Input LOW Voltage (TX Disable) <sup>2</sup>   | $V_{_{I\!L}}$               | 0       | -       | 0.8                   | V     |
| Output HIGH Voltage (TX Disable) <sup>3</sup> | $V_{_{\mathrm{OH}}}$        | 2.0     | -       | V <sub>CC</sub> + 0.3 | V     |
| Output LOW Voltage (TX Disable) <sup>3</sup>  | $V_{\scriptscriptstyle OL}$ | 0       | -       | 0.8                   | V     |

<sup>&</sup>lt;sup>1</sup> Differential peak-to-peak voltage.

# **Receiver Electrical Characteristics** (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

| Parameter                              | Symbol                      | Minimum | Typical | Maximum        | Units |
|----------------------------------------|-----------------------------|---------|---------|----------------|-------|
| Output Voltage Swing (RD+ & RD-) 1     | $V_{_{PP	ext{-}DIFF}}$      | 0.6     | -       | 2.0            | V     |
| Output HIGH Voltage (LOS) <sup>2</sup> | $V_{_{\mathrm{OH}}}$        | 2.0     | -       | $V_{CC} + 0.3$ | V     |
| Output LOW Voltage (LOS) <sup>2</sup>  | $V_{\scriptscriptstyle OL}$ | 0       | -       | 0.5            | V     |

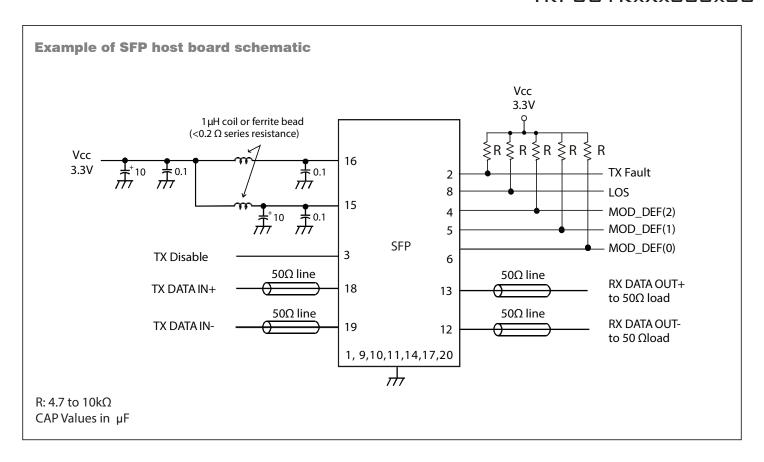

<sup>&</sup>lt;sup>1</sup> Differential peak-to-peak voltage across external  $100\Omega$  load.


# **Electrical Power Supply Characteristics** (Over Operating Case Temperature. $V_{CC} = 3.13$ to 3.47V)

| Parameter         |               | Symbol   | Minimum | Typical | Maximum | Units |
|-------------------|---------------|----------|---------|---------|---------|-------|
| Supply Voltage    |               | $V_{cc}$ | 3.13    | 3.3     | 3.47    | V     |
| Dower Dissipation | C-temp/E-temp | PW       | -       | -       | 1       | W     |
| Power Dissipation | I-temp        | PVV      | -       | -       | 1.5     |       |

#### **Module Definition**

| MOD_DEF(0) | MOD_DEF(1) | MOD_DEF(2) | Interpretation by Host            |
|------------|------------|------------|-----------------------------------|
| pin 6      | pin 5      | pin 4      |                                   |
| TTL LOW    | SCL        | SDA        | Serial module definition protocol |






 $<sup>^2</sup> There$  is an internal 4.7 to  $10 k\Omega$  pull-up resistor to  $V_{\text{CCT}}$ 

 $<sup>^{3}</sup>$  Open collector compatible, 4.7 to 10 k $\Omega$  pull-up resistor to Vcc (Host Supply Voltage)

 $<sup>^2</sup>$ Open collector compatible, 4.7 to  $10k\Omega$  pull-up resistor to Vcc (Host Supply Voltage).



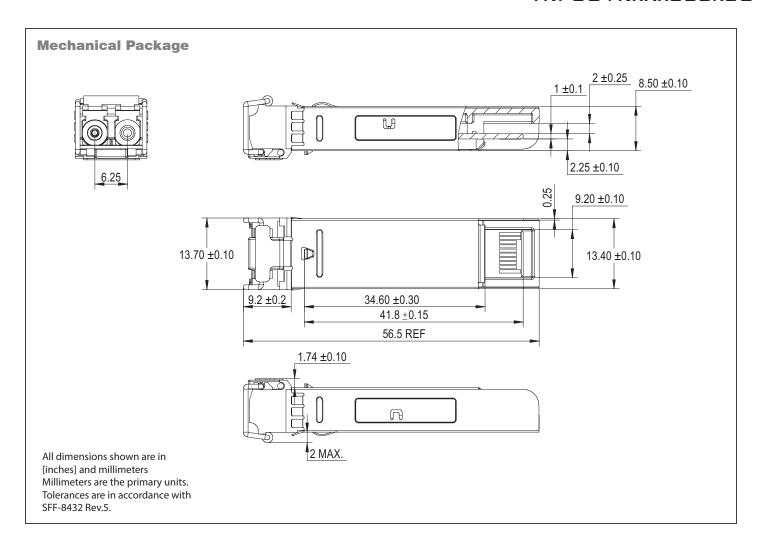
#### **Application Notes**

**Electrical interface:** All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally with 1 $\mu$ F and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7 - 10 $\mu$ C resistor on the host board.

**Loss of Signal (LOS):** The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

**TX\_Fault:** The output indicates LOW when the transmitter is operating normally and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a  $4.7 - 10 \mathrm{k}\Omega$  resistor on the host board. TX Fault is latched per SFP MSA.

**TX\_Disable:** When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled.


**Serial Identification and Monitoring:** The SFP module definition is indicated by the three module definition pins, MOD\_DEF(0), MOD\_DEF(1) and MOD\_DEF(2). Upon power up, MOD\_DEF(1:2) appear as NC (no connection), and

MOD\_DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I<sup>2</sup>C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the SFP that are not write protected, and the negative edge clocks data from the SFP.

The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 11.0.

**Power supply and grounding:** The power supply line should be well-filtered. All  $0.1\mu F$  power supply bypass capacitors should be as close to the transceiver module as possible.



# **Ordering Information**

|                  | Oplink PN        |                  |                 |                       | Latch        |
|------------------|------------------|------------------|-----------------|-----------------------|--------------|
| C-temp           | E-temp           | I-temp           | Wavelength (nm) | Distance <sup>1</sup> | Color        |
| TRPUG1KZXC000L0G | TRPUG1KZXE000L0G | TRPUG1KZXI000L0G | 1271            | 80km                  | Light Violet |
| TRPUG1KZXC000K0G | TRPUG1KZXE000K0G | TRPUG1KZXI000K0G | 1291            | 80km                  | Sky blue     |
| TRPUG1KZXC000J0G | TRPUG1KZXE000J0G | TRPUG1KZXI000J0G | 1311            | 80km                  | Lime         |
| TRPUG1KZXC000H0G | TRPUG1KZXE000H0G | TRPUG1KZXI000H0G | 1331            | 80km                  | Dark Green   |
| TRPUG1KZXC000G0G | TRPUG1KZXE000G0G | TRPUG1KZXI000G0G | 1351            | 80km                  | Pink         |
| TRPUG1KZXC000F0G | TRPUG1KZXE000F0G | TRPUG1KZXI000F0G | 1371            | 80km                  | Beige        |
| TRPUG1KZXC000D0G | TRPUG1KZXE000D0G | TRPUG1KZXI000D0G | 1391            | 80km                  | White        |
| TRPUG1KZXC000C0G | TRPUG1KZXE000C0G | TRPUG1KZXI000C0G | 1411            | 80km                  | Silver       |
| TRPUG1KZXC000B0G | TRPUG1KZXE000B0G | TRPUG1KZXI000B0G | 1431            | 80km                  | Black        |
| TRPUG1KZXC000A0G | TRPUG1KZXE000A0G | TRPUG1KZXI000A0G | 1451            | 80km                  | Magenta      |
| TRPUG1KZXC00010G | TRPUG1KZXE00010G | TRPUG1KZXI00010G | 1471            | 80km                  | Gray         |
| TRPUG1KZXC00020G | TRPUG1KZXE00020G | TRPUG1KZXI00020G | 1491            | 80km                  | Violet       |
| TRPUG1KZXC00030G | TRPUG1KZXE00030G | TRPUG1KZXI00030G | 1511            | 80km                  | Blue         |
| TRPUG1KZXC00040G | TRPUG1KZXE00040G | TRPUG1KZXI00040G | 1531            | 80km                  | Green        |



|                  | Oplink PN        |                  | Center          |            | Latch        |
|------------------|------------------|------------------|-----------------|------------|--------------|
| C-temp           | E-temp           | I-temp           | Wavelength (nm) | Distance 1 | Color        |
| TRPUG1KZXC00050G | TRPUG1KZXE00050G | TRPUG1KZXI00050G | 1551            | 80km       | Yellow       |
| TRPUG1KZXC00060G | TRPUG1KZXE00060G | TRPUG1KZXI00060G | 1571            | 80km       | Orange       |
| TRPUG1KZXC00070G | TRPUG1KZXE00070G | TRPUG1KZXI00070G | 1591            | 80km       | Red          |
| TRPUG1KZXC00080G | TRPUG1KZXE00080G | TRPUG1KZXI00080G | 1611            | 80km       | Brown        |
| TRPUG1KVXC000L0G | TRPUG1KVXE000L0G | TRPUG1KVXI000L0G | 1271            | 120km      | Light Violet |
| TRPUG1KVXC000K0G | TRPUG1KVXE000K0G | TRPUG1KVXI000K0G | 1291            | 120km      | Sky blue     |
| TRPUG1KVXC000J0G | TRPUG1KVXE000J0G | TRPUG1KVXI000J0G | 1311            | 120km      | Lime         |
| TRPUG1KVXC000H0G | TRPUG1KVXE000H0G | TRPUG1KVXI000H0G | 1331            | 120km      | Dark Green   |
| TRPUG1KVXC000G0G | TRPUG1KVXE000G0G | TRPUG1KVXI000G0G | 1351            | 120km      | Pink         |
| TRPUG1KVXC000F0G | TRPUG1KVXE000F0G | TRPUG1KVXI000F0G | 1371            | 120km      | Beige        |
| TRPUG1KVXC000D0G | TRPUG1KVXE000D0G | TRPUG1KVXI000D0G | 1391            | 120km      | White        |
| TRPUG1KVXC000C0G | TRPUG1KVXE000C0G | TRPUG1KVXI000C0G | 1411            | 120km      | Silver       |
| TRPUG1KVXC000B0G | TRPUG1KVXE000B0G | TRPUG1KVXI000B0G | 1431            | 120km      | Black        |
| TRPUG1KVXC000A0G | TRPUG1KVXE000A0G | TRPUG1KVXI000A0G | 1451            | 120km      | Magenta      |
| TRPUG1KVXC00010G | TRPUG1KVXE00010G | TRPUG1KVXI00010G | 1471            | 120km      | Gray         |
| TRPUG1KVXC00020G | TRPUG1KVXE00020G | TRPUG1KVXI00020G | 1491            | 120km      | Violet       |
| TRPUG1KVXC00030G | TRPUG1KVXE00030G | TRPUG1KVXI00030G | 1511            | 120km      | Blue         |
| TRPUG1KVXC00040G | TRPUG1KVXE00040G | TRPUG1KVXI00040G | 1531            | 120km      | Green        |
| TRPUG1KVXC00050G | TRPUG1KVXE00050G | TRPUG1KVXI00050G | 1551            | 120km      | Yellow       |
| TRPUG1KVXC00060G | TRPUG1KVXE00060G | TRPUG1KVXI00060G | 1571            | 120km      | Orange       |
| TRPUG1KVXC00070G | TRPUG1KVXE00070G | TRPUG1KVXI00070G | 1591            | 120km      | Red          |
| TRPUG1KVXC00080G | TRPUG1KVXE00080G | TRPUG1KVXI00080G | 1611            | 120km      | Brown        |

<sup>&</sup>lt;sup>1</sup> The indicated transmission distance is for guidelines only, not guaranteed. It assumes a total connector/splice/CWDM mux and demux loss of 4.5dB, allocated system penalty of 2dB and fiber loss of 0.25dB/km. Longer distances can be supported if the optical link power budget is satisfied.